A strikingly higher proportion of Pcdh-γ-containing
organelles in synaptic compartments was observed at postnatal day 16. To determine the origin of Pcdh-γ-trafficking organelles, we isolated organelles with Pcdh-γ antibody-coupled magnetic beads from brain organelle suspensions. Vesicles with high levels of COPII and endoplasmic reticulum–Golgi intermediate compartment (ERGIC) components were isolated with the Pcdh-γ antibody but not with the classical cadherin antibody. In cultured hippocampal neurons, Pcdh-γ immunolabeling partially overlapped with calnexin- and COPII-positive puncta in dendrites. Mobile Pcdh-γ-GFP profiles dynamically codistributed Screening Library with a DsRed construct coupled to ER retention signals by live imaging. Pcdh-γ expression correlated with accumulations of tubulovesicular and ER-like organelles in dendrites. Our results are consistent with the possibility that Pcdh-γs could have a unique function within the
secretory pathway in addition to their documented surface roles. “
“Neuronal injury is a key feature of neonatal hypoxic–ischemic (HI) brain injury. However, the mechanisms underpinning neuronal losses, such as in the brainstem, BMN 673 manufacturer are poorly understood. One possibility is that disrupted neural connections between the cortex and brainstem may compromise the survival of neuronal cell bodies in the brainstem. We investigated CYTH4 whether brainstem raphé serotonergic neurons that project to the cortex are lost after HI. We also tested if neuroinflammation has a role in disrupting brainstem raphé projections. Postnatal day 3 (P3) rats underwent unilateral carotid
artery ligation followed by hypoxia (6% oxygen for 30 min). A retrograde tracer, choleratoxin b, was deposited in the motor cortex on P38. On P45 we found that retrogradely labelled neurons in the dorsal raphé dorsal, ventrolateral, interfascicular, caudal and ventral nuclei were lost after P3 HI. All retrogradely labelled neurons in the raphé nuclei were serotonergic. Numbers of retrogradely labelled neurons were also reduced in the ventromedial thalamus and basolateral amygdala. Minocycline treatment (45 mg/kg 2 h post-HI, 22.5 mg/kg daily P4–P9) attenuated losses of retrogradely labelled neurons in the dorsal raphé ventrolateral, interfascicular and ventral raphé nuclei, and the ventromedial thalamus. These results indicate that raphé neurons projecting to the cortex constitute a population of serotonergic neurons that are lost after P3 HI. Furthermore, neuroinflammation has a role in the disruption of raphé and thalamic neural projections. Future studies investigating the cellular mechanisms of axonal degeneration may reveal new targets for interventions to prevent neuronal losses after neonatal HI.