(C) 2008 Elsevier Ireland Ltd and the Japan Neuroscience Society

(C) 2008 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.”
“Herpes simplex virus type 1 glycoprotein K (gK) and the UL20 protein (UL20p) are coordinately transported to the trans-Golgi network (TGN)

and cell surfaces and are required for cytoplasmic virion envelopment at the TGN. In addition, cell surface expression of gK and UL20p is required for virus-induced cell fusion. Previously, confocal microscopy colocalization and intracellular transport experiments strongly suggested direct protein-protein interactions between gK and UL20p. Direct protein-protein interactions between gK and UL20p buy KU-60019 were demonstrated through reciprocal coimmunoprecipitation experiments, as well as with glutathione S-transferase (GST) pull-down experiments. A fusion protein consisting of the amino-terminal 66 amino acids of UL20p fused in-frame with GST was expressed in Escherichia coli and purified via glutathione column chromatography. Precipitation of GST-UL20p from mixtures of GST-UL20p fusion protein

with cellular extracts containing gK specifically coprecipitated gK but not other viral glycoproteins. The purified UL20p-GST fusion protein reacted with all gK-associated protein species. It was concluded that the amino terminus of UL20p, most likely, interacted with gK domain III, Alvespimycin research buy which is predicted to lie intracellularly. UL20p-gK domain-specific interactions must serve important functions in the coordinate

transport of UL20p and gK to the TGN, because retention of UL20p in the endoplasmic reticulum (ER) via the addition of an ER retention signal at the carboxyl terminus of UL20p forced the ER retention of gK and drastically inhibited Milciclib molecular weight intracellular virion envelopment and virus-induced cell fusion.”
“Freshwater planarians are an emerging model in which to study regeneration at the molecular level. These animals can regenerate a complete central nervous system (CNS) in only a few days. In recent years, hundreds of genes expressed in the nervous system have been identified in two popular planarian species used by several laboratories: Dugesia japonica and Schmidtea mediterranea. Functional analyses of some of those neural genes have allowed the process of CNS regeneration to begin to be elucidated in those animals. However, additional work is required to characterize the different neuronal populations. Thus, the identification or generation of antibodies that act as markers for specific neuronal cell types would be extremely useful not only in obtaining a more detailed characterization of the planarian nervous system but also for the analysis of phenotypes obtained by RNA interference. Here, I have used five different antibodies to describe different neuronal populations in the freshwater planarian S. mediterranea.

Comments are closed.