However, different degrees of cell invasion were observed (includ

However, different degrees of cell invasion were observed (including strains expressing intimin omicron). Although all aEPEC strains studied were devoid of known E. coli genes supporting invasion [27], they are heterogeneous regarding the presence of additional virulence genes [5]. However, it remains to be evaluated whether the invasion PCI-32765 solubility dmso ability as shown for aEPEC 1551-2 [29] of other aEPEC strains could be associated with the intimin sub-type. Furthermore, differences in invasion index could also be related to the presence of other factors, such as LEE and non-LEE effector proteins or expression of additional virulence genes. Alternatively, the affinity of both intimin and a

specific Tir counterpart could influence the degree of manipulation of the cytoskeleton thus favoring less or more pronounced invasion. Figure 1 Invasion of epithelial cells by aEPEC and tEPEC strains.

A) Percent of invasion in HeLa cells. B) Percent of www.selleckchem.com/products/ch5183284-debio-1347.html invasion in T84 cells. Monolayers were infected for 6 h (aEPEC) and 3 h (tEPEC). Results of percent invasion are expressed as the percentage of cell associated bacteria BMS-907351 mw that resisted killing by gentamicin and are the means ± standard error from at least three independent experiments in duplicate wells. *significantly more invasive than prototype tEPEC E2348/69 (P < 0.05 by an unpaired, two-tailed t test). In order to identify the host cell structures and processes that might be involved in HeLa cells invasion by aEPEC 1551-2, we treated the cells with reagents affecting the cytoskeleton such as cytochalasin D (to disrupt actin Nintedanib (BIBF 1120) microfilament formation) or colchicine (to inhibit microtubule function) prior to infection. Optical microscopy analysis revealed that treatment with cytochalasin D did not affect bacterial adhesion (data not shown). However, significantly decreased invasion by aEPEC 1551-2 (from 13.4% ± 4.1 to 1.2% ± 1.0 and 0.4% ± 0.3) was detected, as observed with the invasive S. enterica sv Typhimurium control strain (from 81.3% ± 4.2 to 55.9% ± 4.9 and 35.1% ± 7.1) and S. flexneri (from 68.9 ± 10.7 to 15.9 ± 9.5 and 11.2

± 5.1). These results indicate that a functional host cell actin cytoskeleton is necessary for aEPEC 1551-2 uptake (Fig. 2A). In addition, this suggests that A/E lesion formation may be necessary for the invasion process since inhibition of actin polymerization resulted in both prevention of A/E lesion formation and decreased invasion. In contrast, aEPEC 1551-2 adherence (not shown) and invasion (Fig. 2B) were unaffected by colchicine cell treatment (invasion indexes of 6.2% ± 0.9 and 7.8% ± 0.6, non-treated and treated, respectively). This indicates that the microtubule network is not involved in the invasion process. As expected, S. enterica sv Typhimurium (25.0% ± 10.6 and 17.5% ± 10.2, respectively), and S. flexneri (22.1% ± 4.0 and 33.2% ± 7.1, respectively), were neither affected by treating cells with colchicine.

Comments are closed.