Isoform A, called PlyA [17 kDa PlyA] has 138 amino acid residues

Isoform A, called PlyA [17 kDa PlyA] has 138 amino acid residues whereas the 59 kDa isoform B polypeptide (PlyB) consists of 538 amino acids. The two aegerolysin ESTs expressed by M. perniciosa constitute two distinct genes (Figures 7 and 8). MpPRIA1 has an ORF of 417 bp with an intron at position 103 whereas the ORF of MpPRIA2 NSC 683864 is 406

bp long with an intron at position 134 (data not shown). Both have a conserved aegerolysin check details Domain between residues 4 to 136 (MpPRIA1) and 29 to 135 (MpPRIA2) and can be aligned with a hypothetical protein MPER_11381 (gbEEB90416.1) (Figure 7A) and MPER_04618 (gbEEB96271.1 – not shown) of M. perniciosa FA553 and proteins described as aegerolysins of A. aegerita (spO42717.1), P. ostreatus (PlyA – gbAAL57035.1

and ostreolysin – gbAAX21097.1), A. fumigatus Af293 (XP 748379.1), A. fumigatus (gbBAA03951.1) Coccidioides immitis RS (XP_001242288.1) A. niger (XP_001389418.1) (Figure 7A). The evolutionary distance between these putative aegerolysins and above-cited aegerolysin of the Gene Bank database was estimated (Figure 7B). The distances were shorter between MpPRIA1 and MpPRIA2 and aegerolysins of Pleurotus and Agrocybe than between MpPRIAs and Asp-hemolysins and ostreolysins of Aspergillus. Figure 7 Comparison between M. perniciosa aegerolysins and other fungi. A – Alignment for similarity between ORFs of the two probable aegerolysins of M. perniciosa (MpPRIA1 and MpPRIA2) and aegerolysins of M. perniciosa FA553 (gbEEB90416.1), A. aegerita (spO42717.1), P. ostreatus (PriA – gbAAL57035.1 and ostreolysin – gbAAX21097.1), A. fumigatus Selleckchem Pazopanib Af293 (XP 748379.1), A. fumigatus (gbBAA03951.1) C. immitis RS (XP_001242288.1) SB202190 mouse A. niger (XP_001389418.1). Strictly conserved residues are shown in black and similar residues in gray. Consensus symbols: ! is any of IV, $ is any of LM, % is any of FY, # is any of NDQEBZ. Domain PF06355 (aegerolysin family) is present in MpPRIA1 (residues 4–136, score 8.7e-61) and MpPRIA2 (residues 29–135, score 4.2e-34). B. Phylogenetic analysis of the probable aegerolysin genes

of M. perniciosa with above-cited sequences. Evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the analyzed taxa. Figure 8 Comparison between M. perniciosa pleurotolysin and other fungi. A – Alignment for similarity between ORFS of the one probable pleurotolysin B of M. perniciosa (MpPLYB) and hypothetical proteins of M. perniciosa FA553 (gb EEB89936.1), P. ostreatus (gb BAD66667.1), G. zeae PH-1 (XP_390875.1), A. flavus NRRL3357 (gbEED49642.1), C. globosum CBS 148.51 (XP_001227240.1). Strictly conserved residues are shown in black and similar residues in gray. Consensus symbols are used similarly as in Figure 7. Domain MAC/Perforin (PF01823) is present in MpPLYB (residues 1 to 258, score -35,2). B. Phylogenetic analysis of the probable pleurotolysin B gene of M.

Comments are closed.