To examine the role of the cerebellum in APAs, we investigated a

To examine the role of the cerebellum in APAs, we investigated a conditional trans. genie mouse of spinocerebellar ataxia type 3 (SCA3Tg) that has defective cerebellar Purkinje cells. Kinematic analyses and monitoring of electromyographic activities during quadrupedal standing showed that SCA3Tg mice exhibited greater hindlimb instability than wild-type (WT) mice. This instability increased during a reaching task that required postural adjustments associated with

voluntary neck movements. Normally, the activities of the hindlimb muscles are synchronized SHP099 price with those in the neck that are the agonists for movement of the head in this reaching task; however, in SCA3Tg mice, activities in the hindlimbs were markedly delayed compared to the neck. These observations cannot simply be explained Lazertinib as a secondary outcome of the muscle atrophy that occurs in SCA3Tg mice. In WT mice with muscle atrophy induced by immobilization of the hindlimbs, we did not find impairment of APAs. These findings suggest that the deficits in APAs during the reaching task in SCA3Tg mice were not due to muscle atrophy in the hindlimbs, but were

mainly caused by cerebellar degeneration. Therefore, we conclude that the cerebellum is critically involved in APAs. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved.”
“The subventricular zone (SVZ) is a dynamic cellular niche with unique neurogenic properties that are, as of yet, not fully understood. Astrocytes residing in the SVZ have been shown to spawn migratory neuroblasts via transitory amplifying progenitor cells. These migratory neuroblasts play a role in maintaining the olfactory circuitry in healthy brains and potentially have restorative properties after brain injury. Therefore, it is imperative to understand 17-DMAG (Alvespimycin) HCl the basic nature of these neurogenic astrocytes in order to gain a more cohesive picture of SVZ adult neurogenesis. However, one of the obstacles in this line of research is to specifically genetically modify SVZ astrocytes. Viral vector systems, based on adeno-associated viruses and lentiviruses, are

flexible gene transfer systems that allow long-term transgene expression in a host cell. Electroporation allows for the transient expression of larger transgenes; whereas the cre/loxP system provides a lifetime of inherently stable genetic modulation. The benefits and drawbacks of these transduction methods and the application of various astrocyte-specific promoters are discussed with regard to their efficiency and accuracy when transducing adult SVZ astrocytes in the mouse brain. In vivo studies that manipulate gene expression in SVZ astrocytes will be essential to fully dissect and understand the complex molecular and cellular properties of the SVZ in the upcoming years. (C) 2010 Elsevier Ltd. All rights reserved.

Comments are closed.