The low specificity indicates that the major outer membrane Osimertinib clinical trial proteins in the family Enterobacteriaceae
are perhaps well conserved as indicated selleck chemical by their antigenic cross-reactivity. The specificity of the monoclonal antibodies was further tested using SDS-PAGE and immunoblotting. The SDS-PAGE protein profiles for the OMPs observed in this study were similar to those of OMPs described by other researchers for other members of the Enterobacteriaceae [38, 39]. Overall, most of the isolates contained OMP proteins with MW ranged from 34-55 kDa (Figure 2 upper panel) with majority of the isolates exhibiting proteins in the range of 36-49 kDa with the 49 kDa protein appeared in all Cronobacter species (Figure 2 upper panel). In contrast, the non-Cronobacter MAPK inhibitor isolates (Figure 3) showed slightly different protein profiles among the Enterobacteriaceae members and even a slight shift in the tested Gram-positive strain, L. ivanovii. The cross-reactivity observed among all Cronobacter strains used in this study indicated that some of these OMPs share common and highly antigenic epitopes. These patterns of cross-reactivity
of MAbs with OMPs from bacterial strains within the same species are commonly reported especially for members of the Enterobacteriaceae [38–42]. On the other hand, fewer studies have reported the production of anti-OMP MAbs within species that were non-cross reacting and exhibiting a high degree of specificity [43, 44]. The reactivity of MAbs to OMP and the lack of any reactivity against LPS indicated that Cronobacter OMPs appeared to be more antigenic see more than their LPS. This observation coincides with several other reports in which it was demonstrated that OMPS were stronger immunogenes than LPS, and were responsible for producing antibodies with higher affinities [45, 46]. All MAbs tested by immunoblotting against OMPs extracted from C. muytjensii ATTC 51329 were able to recognize a 44 kDa protein. This protein appears to contain a highly antigenic epitope capable of eliciting strong immune response
in mice against the Cronobacter strain used in the immunization procedure. The identity of this protein was determined by MALDI-TOF MS to be a hypothetical outer membrane protein ESA_03699 [Enterobacter sakazakii ATCC BAA-894]. This protein appeared to be dominant in this particular strain and protruding to the surface making it highly accessible to the host immune system. The specific function of this protein is unknown but it would be of significant interest in future studies since it was not detected in other strains. Other proteins from Cronobacter and non-Cronobacter (E. coli and Salmonella) recognized by the MAbs were also sequenced and aligned against known protein sequences deposited in protein sequence banks.